Sea Level Rise Is Partly Anthropogenic – but Due to Subsidence, Not Global Warming

Rising sea levels are all too often blamed on climate change by activists and the media. But a recent research study has revealed that, while much of sea level rise in coastal cities is indeed due to human activity, the culprit is land subsidence caused by groundwater extraction, rather than any human-induced global warming.

The study, conducted by oceanographers at the University of Rhode Island, measured subsidence rates in 99 coastal cities around the world between 2015 and 2020, using data from a pair of Europe’s Sentinel-1 satellites. The subsidence rates for each city were calculated from satellite images taken once every two months during the observation period – a procedure that enabled the researchers to measure the height of the ground with millimeter accuracy.

Several different processes can affect vertical motion of land, as I discussed in a previous post. Long-term glacial rebound after melting of the last ice age’s heavy ice sheets is causing land to rise in high northern latitudes. But in many regions, the ground is sinking because of sediment settling and aquifer compaction caused by human activities, especially groundwater depletion resulting from rapid urbanization and population growth. 

The study found that subsidence is common across the globe. The figure below shows the maximum subsidence rates measured by the authors in the 99 coastal cities studied, from 2015 to 2020.

In Tianjin, China and Jakarta, Indonesia, parts of the city are subsiding at alarming rates exceeding 30 mm (1.2 inches) per year. Maximum rates of this magnitude dwarf average global sea level rise by as much as 15 times. Even in 31 other cities, the maximum subsidence rate is more than 5 times faster than global sea level rise.

The most rapid subsidence is occurring in southern, southeastern and eastern Asia. Even in cities that are relatively stable, some areas of the cities are sinking faster than sea levels are rising. The next figure demonstrates four examples: Taipei, the largest city in Taiwan with a population of 2.7 million; Mumbai, with a population of about 20 million; Auckland, the largest city in New Zealand and home to 1.6 million people; and for comparison with the U.S., Tampa, which has a population of over 3 million. Both Taipei and Tampa are seen to have major subsidence.

This study of subsidence throws light on a long-standing dilemma: what is the true rate of global sea level rise? According to NOAA (the U.S. National Oceanic and Atmospheric Administration) tide gauge records, the average rate of rise during the 20th century was 1.7 mm (about 1/16th of an inch) per year. But NASA’s satellite measurements say the rate is more like 3.4 mm (1/8th of an inch) per year, double NOAA’s value.

The difference comes from subsidence. Satellite observations of absolute sea level measure the height of the sea – the distance of its surface to the center of the earth. Tide gauges measure the height of the sea relative to the land to which the gauge is attached, the so-called RSL (Relative Sea Level) metric. Sinking of the land independently of sea level, as in the case of the 99 cities studied, artificially amplifies the RSL rise and makes satellite-measured sea levels higher than tide gauge RSLs.

But it's the tide gauge measurements that matter to the local community and its engineers and planners. Whether or not tidal cycles or storms cause flooding of critical coastal structures depends on the RSL measured at that location. Adaptation needs to be based on RSLs, not sea levels determined by satellite.

Shown in the two figures below are tide gauge time series compiled by NOAA for various sites around the globe that have long-term records dating back to 1900 or before. The graph in the left panel of the upper figure is the average of records at two sites: Harlingen in the Netherlands and Honolulu in Hawaii. The average rate of RSL rise at these two locations is 1.38 mm (0.05 inches) per year, with an acceleration of only 0.007 mm per year per year, which is essentially zero. At Sydney in Australia (right panel of upper figure), the RSL is rising at only 0.78 mm (0.03 inches) per year.

In the lower figure, the rate of RSL rise at Charleston – a “hotspot” for sea level rise on the U.S. Atlantic coast – is a high 3.4 mm (0.13 inches) per year. At Mumbai, where much of the city is subsiding more rapidly than 2 mm (0.08 inches) per year as seen earlier, the RSL is rising at 0.83 mm (0.03 inches) per year, comparable to Sydney. Without subsidence at Mumbai, the RSL would be falling.  

Were it not for anthropogenic subsidence, actual rates of sea level rise in many parts of the world would be considerably lower than they appear.

Next: Climate Science Establishment Finally Admits Some Models Run Too Hot

New Projections of Sea Level Rise Are Overblown

That sea levels are rising due to global warming is not in question. But there’s no strong scientific evidence that the rate of rise is accelerating, as claimed in a recent NOAA (the U.S. National Oceanic and Atmospheric Administration) report on sea level rise or the Sixth Assessment Report (AR6) of the UN’s IPCC (Intergovernmental Panel on Climate Change). Such claims create unnecessary alarm.

NOAA’s projections to 2050 are illustrated in the next figure, showing sea level relative to 2000 both globally and in the contiguous U.S. The green curves represent a smoothing of actual observations from 1970 to 2020, together with an extrapolation from 2020 to 2050 based on the earlier observations. The projections in other colors correspond to five different modeled scenarios ranging from low to high risk for coastal communities.

The U.S. projections are higher than the global average because the North American Atlantic coast is a “hotspot” for sea level rise, with anomalously high rates of rise. The extrapolated U.S. average is projected to increase from 11 cm (4.3 inches) above its 2000 level in 2020, to 19 cm (7.5 inches) in 2030, 28 cm (11 inches) in 2040 and 38 cm (15 inches) in 2050. Projected increases are somewhat higher than average for the Atlantic and Gulf coasts, and considerably lower for the west coast.

These projected NOAA increases clearly suggest an accelerating rate of sea level rise, from a rate of 5.5 cm (2.2 inches) per decade between 2000 and 2020, to an almost doubled 10 cm (3.9 inches) per decade between 2040 and 2050. That’s a rapid acceleration rate of 1.5 mm per year per year and implies a rise in U.S. sea levels by 2050 as large as that seen over the past century. The implied global acceleration rate is 0.83 mm per year per year.

But even the IPCC’s AR6, which makes exaggerated claims about extreme weather, estimates global sea level acceleration at only 0.1 mm per year per year from 1993 to 2018. It seems highly unlikely that the rate would increase by nearly an order of magnitude in 32 years, so the NOAA projections appear excessively high.  

However, all these estimates are based not only on actual measurements, but also on computer models. The models include contributions to sea level rise from the expansion of seawater as it warms; melting of the Greenland and Antarctic ice sheets, as well as glaciers; sinking of the seafloor under the weight of extra meltwater; and local subsidence due to groundwater depletion, or rebound after melting of the last ice age’s heavy ice sheet.

The figure on the left below shows the GMSL (global-mean sea level, blue curve) rise rate estimated by one of the models for the 100 years from 1910 to 2010. Although it’s clear that the rate has been increasing since the late 1960s, it did the same in the 1920s and 1930s, and may currently be turning downward. Not surprisingly, studies using these models often come to very different conclusions about future rates of sea level rise.

The figure on the right below is an historical reconstruction of the rise rate for various locations along the Atlantic North American and Icelandic coasts, derived from salt-marsh sediment proxies and corrected for glacial rebound. It can be seen that rates of rise in the 18th century were at times only slightly lower than those in the 20th century, and that sea levels have fluctuated for at least 300 years, long before modern global warming began.

Because of this, the reconstruction study authors comment that the high “hotspot” rates of sea level rise in eastern North America may not be associated with any human contribution to global warming. They hypothesize that the fluctuations are related to changes in the mass of Arctic land ice, possibly associated with the naturally occurring North Atlantic Oscillation.

Along with the IPCC estimates, the reconstruction casts doubt on NOAA’s claim of continuing acceleration of today’s sea level rise rate. An accompanying news release adds to the hype, stating that “Sea levels are continuing to rise at an alarming rate, endangering communities around the world.”

Supporting the conclusion that NOAA’s projections are exaggerated is a 2021 assessment by climate scientist Judith Curry of projected sea level scenarios for the New Jersey coast. Taking issue with a 2019 report led by scientists from Rutgers University, her assessment found that the Rutgers sea level projections were – like NOAA’s estimates – substantially higher than those of the IPCC in its Fifth Assessment Report prior to AR6. Curry’s finding was that the bottom of the Rutgers “likely” scenarios was the most probable indicator of New Jersey sea level rise by 2050.

Interestingly, NOAA’s “low” scenario projected a U.S. average sea level of 31 cm (12 inches) in 2050, rather than 38 cm (15 inches), implying essentially no acceleration of the rise rate at all – and no cause for its media hype.

(This post has also been kindly reproduced in full on the Climate Depot blog.)

Next: Natural Sources of Global Warming and Cooling: (2) The PDO and AMO

No Evidence That Islands Are Sinking Due to Rising Seas

According to the climate-change narrative, island nations such as the Maldives in the Indian Ocean and Tuvalu in the Pacific face the specter of rising seas, fleeing residents and vanishing villages. But recent research belies the claim that such tropical paradises are about to disappear beneath the waves, revealing that most of the hundreds of atolls studied actually grew in size from 2000 to 2017.

Low-lying atoll islands consist of a ring-shaped coral reef partly or completely encircling a shallow green lagoon in the midst of a deep blue sea. Perched just a few meters above sea level, these coral-reef islands are susceptible to rising waters that can cause flooding, damage to infrastructure and the intrusion of saltwater into groundwater. Such concerns are behind the grim prognosis that islanders will become “climate refugees,” forced to leave their homes as the oceans rise.

However, two recent studies conclude that this threat is unfounded. A 2021 study analyzed changes in land area on 221 atolls in the Indian and Pacific Oceans, utilizing cloud-free imagery from Landsat satellites. The atolls studied are shown in red in the following figure. Apart from the Maldives and Tuvalu, the dataset included islands in the South China Sea, the Marshall Islands and French Polynesia.

The study found that the total land area of the atolls increased by 6.1% between 2000 and 2017, from 1,008 to 1,069 square kilometers (389 to 413 square miles). Most of the gain was from the Maldives and South China Sea atolls, which together accounted for 88% of the total increase, and came from artificial building of islands within those areas for development of infrastructure, extra land and resorts.

As shown in the next figure, the areas of two island groups – French Polynesia and Palau – did diminish over the study period. Although these two groups accounted for 68 of the 221 atolls studied, the combined decrease represents only 0.15% of the global total area. The Republic of the Marshall Islands is designated as RMI; the percentages at the bottom of the figure are the increases or decreases of the individual island groups.

An earlier study by the same researchers analyzed shoreline changes in the 101 reef islands of the Pacific nation of Tuvalu between 1971 and 2014; this excluded the 9 atolls forming part of the subsequent study. During these 43 years the local sea level rose at twice the global average, at a rate of 3.9 mm (about 1/8 of an inch) per year. But despite surging seas, the total land area of the 101 islands expanded by 2.9% over the slightly more than four decades. The changes are illustrated in the figure below, where the areas on the horizontal axis and the changes on the vertical axis are measured in hectares (ha).

Altogether, 73 reef islands grew in size – some by more than 100% – and the other 28 shrank, though by a smaller average amount. Light blue circles enclosing symbols in the figure denote populated islands. Tuvalau is home to 10,600 people, half of whom live on the urban island of Fogafale in Funafuti atoll. Fogafale expanded by 3% or 4.6 hectares (11.4 acres) over the 43-year study period.

Concerns about rising seas in the Maldives, the world’s lowest country, gained worldwide attention in 2009 when the Maldivian president and cabinet held an underwater meeting at the bottom of a turquoise lagoon. But the theatrics of ministers clad in black diving suits and goggles, signing a document asking all countries to reduce their CO2 emissions, were unnecessary. A research paper published subsequently in 2018 by Northumbria University scientists found that the Maldives actually formed when sea levels were even higher than they are today.

The researchers studied the formation of five atoll rim islands in the southern Maldives, by drilling cores in sand- and gravel-based reefs. A timeline was established by radiocarbon dating. What they found was that the islands formed approximately three to four thousand years ago, through the pounding on the reefs of large waves caused by distant storms off the coast of South Africa.

These large waves, known as high-energy wave events, broke coral debris off the reefs and transported it onto reef platforms, initiating reef island growth. Sea levels at that time were at least 0.5 meters (1.6 feet) higher than they are today, so the waves had more energy than current ocean swells. Further vertical reef growth is possible in the future, the study authors say, as sea levels continue to rise and large wave events increase, accompanied by sedimentation.

Next: Little Evidence That Global Warming Is Causing Extinction of Coral Reefs

Ice Sheet Update (2): Greenland Ice Sheet Melting No Faster than Last Century

The climate doomsday machine makes much more noise about warming-induced melting of Greenland’s ice sheet than Antarctica’s, even though the Greenland sheet holds only about 10% as much ice. That’s because the smaller Greenland ice sheet is melting at a faster rate and contributes more to sea level rise. But the melt rate is no faster today than it was 90 years ago and appears to have slowed over the last few years.

The ice sheet, 2-3 km (6,600-9,800 feet) thick, consists of layers of compressed snow built up over at least hundreds of thousands of years. Melting takes place only during Greenland’s late spring and summer, the meltwater running over the ice sheet surface into the ocean, as well as funneling its way down through thick glaciers, helping speed up their flow toward the sea.

In addition to summer melting, the sheet loses ice at its edges from calving or breaking off of icebergs, and from submarine melting by warm seawater. Apart from these losses, a small amount of ice is gained over the long winter from the accumulation of compacted snow at high altitudes in the island’s interior. The net result of all these processes at the end of summer melt in August is illustrated in the adjacent figure, based on NASA satellite data.

The following figure depicts the daily variation, over the past year, of the estimated surface mass balance of the Greenland ice sheet – which includes gains from snowfall and losses from melt runoff, but not sheet edge losses – as well as the mean daily variation for the period from 1981 to 2010. The loss of ice during the summer months of June, July and August is clearly visible, though the summer loss was smaller in 2021 than in many years. An unusual, record-setting gain can also be seen in May 2021.

The next figure shows the average annual gain or loss of both the surface mass balance (in blue) and a measure of the total mass balance (in black), going all the way back to 1840. Most of the data comes from meteorological stations across Greenland. The total mass balance in this graph includes the surface mass balance, iceberg calving and submarine melting (combined in the gray dashed line), and melting from basal sources underneath the ice sheet, but not peripheral glaciers – glaciers that contribute 15 to 20% of Greenland’s total mass loss.

It can be seen that the rate of ice loss excluding glaciers has increased since about 2000. But it’s also clear from the graph that high short-term loss rates have occurred more than once in the past, notably in the 1930s and the 1950s – so the current shrinking of the Greenland ice sheet is nothing remarkable. There’s no obvious correlation with global temperatures, since the planet warmed from 1910 to 1940 but cooled from 1940 to 1970.

The total ice loss (not its rate) since 1972 is displayed in more detail in the final figure below. The slightly different estimates of the total mass are because some estimates include losses from peripheral glaciers and basal melting, while others don’t. Nevertheless, the insert showing mass loss from 2010 to 2020 reveals clearly that the rate of loss may have slowed down since about 2015.

The 2020 loss was 152 gigatonnes (168 gigatons), much lower than the average annual losses of 258 gigatonnes (284 gigatons) and 247 gigatonnes (272 gigatons) from 2002 to 2016 and 2012 through 2016, respectively. The 2020 loss also pales in comparison with the record high losses of 458 gigatonnes (505 gigatons) in 2012 and 329 gigatonnes (363 gigatons) in 2019. The 2021 loss is on track to be similar to 2020, according to estimates at the end of the summer melt season.

The Sixth Assessment Report of the UN’s IPCC (Intergovernmental Panel on Climate Change) maintains with high confidence that, between 2006 and 2018, melting of the Greenland ice sheet and peripheral glaciers was causing sea levels to rise by 0.63 mm (25 thousandths of an inch) per year. This can be compared with a rise of 0.37 mm (15 thousandths of an inch) per year from melting of Antarctic ice. However, the rate of rise from Greenland ice losses may be falling, as discussed above.

If the rate of Greenland ice loss were to remain at its 2012 to 2016 average of 247 gigatonnes (272 gigatons) per year, which is an annual loss of about 0.01% of the total mass of the ice sheet, it would take another 10,000 years for all Greenland’s ice to melt. If the rate stays at the 2020 value of 152 gigatonnes (168 gigatons) per year, the ice sheet would last another 17,000 years.

Next: Challenges to the CO2 Global Warming Hypothesis: (5) Peer Review Abused to Axe Skeptical Paper

Ice Sheet Update (1): Evidence That Antarctica Is Cooling, Not Warming

Melting due to climate change of the Antarctic and Greenland ice sheets has led to widespread panic about the future impact of global warming. But, as we’ll see in this and a subsequent post, Antarctica may not be warming overall, while the rate of ice loss in Greenland has slowed recently.

The kilometers-thick Antarctic ice sheet contains about 90% of the world’s freshwater ice and would raise global sea levels by about 60 meters (200 feet) were it to melt completely. The Sixth Assessment Report of the UN’s IPCC (Intergovernmental Panel on Climate Change) maintains with high confidence that, between 2006 and 2018, melting of the Antarctic ice sheet was causing sea levels to rise by 0.37 mm (15 thousandths of an inch) per year, contributing about 10% of the global total.

By far the largest region is East Antarctica, which covers two thirds of the continent as seen in the figure below and holds nine times as much ice by volume as West Antarctica. The hype about imminent collapse of the Antarctic ice sheet is based on rapid melting of the glaciers in West Antarctica; the glaciers contribute an estimated 63% (see here) to 73% (here) of the annual Antarctic ice loss. East Antarctica, on the other hand, may not have shed any mass at all – and may even have gained slightly – over the last three decades, due to the formation of new ice resulting from enhanced snowfall.  

The influence of global warming on Antarctica is uncertain. In an earlier post, I reported the results of a 2014 research study that concluded West Antarctica and the small Antarctic Peninsula, which points toward Argentina, had warmed appreciably from 1958 to 2012, but East Antarctica had barely heated up at all over the same period. The warming rates were 0.22 degrees Celsius (0.40 degrees Fahrenheit) and 0.33 degrees Celsius (0.59 degrees Fahrenheit) per decade, for West Antarctica and the Antarctic Peninsula respectively – both faster than the global average.

But a 2021 study reaches very different conclusions, namely that both West Antarctica and East Antarctica cooled between 1979 and 2018, while the Antarctic Peninsula warmed but at a much lower rate than found in the 2014 study. Both studies are based on reanalyses of limited Antarctic temperature data from mostly coastal meteorological stations, in an attempt to interpolate temperatures in the more inaccessible interior regions of the continent.

This later study appears to carry more weight as it incorporates data from 41 stations, whereas the 2014 study includes only 15 stations. The 2021 study concludes that East Antarctica and West Antarctica have cooled since 1979 at rates of 0.70 degrees Celsius (1.3 degrees Fahrenheit) per decade and 0.42 degrees Celsius (0.76 degrees Fahrenheit) per decade, respectively, with the Antarctic Peninsula having warmed at 0.18 degrees Celsius (0.32 degrees Fahrenheit) per decade.

It’s the possible cooling of West Antarctica that’s most significant, because of ice loss from thinning glaciers. Ice loss and gain rates from Antarctica since 2003, measured by NASA’s ICESat satellite, are illustrated in the next figure, in which dark reds and purples show ice loss and blues show gain.

The high loss rates along the coast of West Antarctica have been linked to thinning of the floating ice shelves that terminate glaciers, by so-called circumpolar deep water warmed by climate change. Although disintegration of an ice shelf already floating on the ocean doesn’t raise sea levels, a retreating ice shelf can accelerate the downhill flow of glaciers that feed the shelf. It’s thought this can destabilize the glaciers and the ice sheets behind them.

However, not all the melting of West Antarctic glaciers is due to global warming and the erosion of ice shelves by circumpolar deep water. As I’ve discussed in a previous post, active volcanoes underneath West Antarctica are melting the ice sheet from below. One of these volcanoes is making a major contribution to melting of the Pine Island Glacier, which is adjacent to the Thwaites Glacier in the first figure above and is responsible for about 25% of the continent’s ice loss.

If the Antarctic Peninsula were to cool along with East Antarctica and West Antarctica, the naturally occurring SAM (Southern Annular Mode) – the north-south movement of a belt of strong southern westerly winds surrounding Antarctica – could switch from its present positive phase to negative. A negative SAM would result in less upwelling of circumpolar deep water, thus reducing ice shelf thinning and the associated melting of glaciers.

As seen in the following figure, the 2021 study’s reanalysis of Antarctic temperatures shows an essentially flat trend for the Antarctic Peninsula since the late 1990s (red curve); warming occurred only before that time. The same behavior is even evident in the earlier 2014 study, which goes back to 1958. So future cooling of the Antarctic Peninsula is not out of the question. The South Pole in East Antarctica this year experienced its coldest winter on record.

Peninsula.jpg

Next: Ice Sheet Update (2): Evidence That Greenland Melting May Have Slowed Down

No Convincing Evidence That Antarctic Ice Sheet Is Melting

Antarctica Dome A.jpg

Of all the observations behind mass hysteria over our climate, none induces as much panic as melting of the earth’s two biggest ice sheets, covering the polar landmasses of Antarctica and Greenland. As long ago as 2006, Al Gore’s environmental documentary “An Inconvenient Truth” proclaimed that global warming would melt enough ice to cause a 6-meter (20-foot) rise in sea level “in the near future.” Today, every calving of a large iceberg from an ice shelf or glacier whips the mainstream media into a frenzy.

The huge Antarctic ice sheet alone would raise global sea levels by about 60 meters (200 feet) were it to melt completely. But there’s little evidence that the kilometers-thick ice sheet, which contains about 90% of the world’s freshwater ice, is melting at all.

Antarctica ice shelf.jpg

Any calving of large icebergs – a natural process unrelated to warming – from an ice shelf, or even disintegration into small icebergs, barely affects sea level. This is because the ice that breaks off was already floating on the ocean. Although a retreating ice shelf can contribute to sea level rise by accelerating the downhill flow of glaciers that feed the shelf, current breakups of Antarctic ice shelves are adding no more than about 0.1 mm (about 4/1000ths of an inch) per year to global sea levels, according to NOAA (the U.S. National Oceanic and Atmospheric Administration).

Global warming has certainly affected Antarctica, though not by as much as the Arctic. East Antarctica, by far the largest region that covers two thirds of the continent, heated up by only 0.06 degrees Celsius (0.11 degrees Fahrenheit) per decade between 1958 and 2012. At the South Pole, which is located in East Antarctica, temperatures actually fell in recent decades.

For comparison, global temperatures over this period rose by 0.11 degrees Celsius (0.20 degrees Fahrenheit) per decade, and Arctic temperatures shot up at an even higher rate. Antarctic warming from 1958 to 2012 is illustrated in the figure below, based on NOAA data. East Antarctica is to the right, West Antarctica to the left of the figure.

Antarctic temps 1958-2012.jpg

You can see, however, that temperatures in West Antarctica and the small Antarctic Peninsula, which points toward Argentina, increased more rapidly than in East Antarctica, by 0.22 degrees Celsius (0.40 degrees Fahrenheit) and 0.33 degrees Celsius (0.59 degrees Fahrenheit) per decade, respectively – faster than the global average. Still, the Peninsula has cooled since 2000.

It’s not surprising, therefore, that all the hype about imminent collapse of the Antarctic ice sheet centers on events in West Antarctica, such as glaciers melting at rapid rates. The Fifth Assessment Report of the UN’s IPCC (Intergovernmental Panel on Climate Change) maintained with high confidence that, between 2005 and 2010, the ice sheet was shedding mass and causing sea levels to rise by 0.41 mm per year, contributing about 24% of the measured rate of 1.7 mm (1/16th of an inch) per year between 1900 and 2010.

On the other hand, a 2015 NASA study reported that the Antarctic ice sheet was actually gaining rather than losing ice in 2008, and that ice thickening was making sea levels fall by 0.23 mm per year. The study authors found that the ice loss from thinning glaciers in West Antarctica and the Antarctic Peninsula was currently outweighed by new ice formation in East Antarctica resulting from warming-enhanced snowfall. Across the continent, Antarctica averages roughly  5 cm (2 inches) of precipitation per year. The same authors say that the trend has continued until at least 2018, despite a recent research paper by an international group of polar scientists endorsing the IPCC human-caused global warming narrative of diminishing Antarctic ice.

The two studies are both based on satellite altimetry – the same method used to measure sea levels, but in this case measuring the height of the ice sheet. Both studies also depend on models to correct the raw data for factors such as snowdrift, ice compaction and motion of the underlying bedrock. It’s differences in the models that give rise to the diametrically opposite results of the studies, one finding that Antarctic ice is melting away but the other concluding that it’s really growing.

Such uncertainty, even in the satellite era, shouldn’t be surprising. Despite the insistence of many climate scientists that theirs is a mature field of research, much of today’s climate science is dependent on models to interpret the empirical observations. The models, just like computer climate models, aren’t always good representations of reality.

Al Gore’s 6-meter (20-foot) rise hasn’t happened yet, and isn’t likely to happen even by the end of this century. Global panic over the impending meltdown of Antarctica is totally unwarranted.

(This post has also been kindly reproduced in full on the Climate Depot blog.)

Next: No Convincing Evidence That Greenland Ice Sheet Is Melting Rapidly

No Evidence That Climate Change Is Accelerating Sea Level Rise

Malé, Maldives Capital City

Malé, Maldives Capital City

By far the most publicized phenomenon cited as evidence for human-induced climate change is rising sea levels, with the media regularly trumpeting the latest prediction of the oceans flooding or submerging cities in the decades to come. Nothing instills as much fear in low-lying coastal communities as the prospect of losing one’s dwelling to a hurricane storm surge or even slowly encroaching seawater. Island nations such as the Maldives in the Indian Ocean and Tuvalu in the Pacific are convinced their tropical paradises are about to disappear beneath the waves.

There’s no doubt that the average global sea level has been increasing ever since the world started to warm after the Little Ice Age ended around 1850. But there’s no reliable scientific evidence that the rate of rise is accelerating, or that the rise is associated with any human contribution to global warming.   

A comprehensive 2018 report on sea level and climate change by Judith Curry, a respected climate scientist and global warming skeptic, emphasizes the complexity of both measuring and trying to understand recent sea level rise. Because of the switch in 1993 from tide gauges to satellite altimetry as the principal method of measurement, the precise magnitude of sea level rise as well as projections for the future are uncertain.

According to both Curry and the UN’s IPCC (Intergovernmental Panel on Climate Change), the average global rate of sea level rise from 1901 to 2010 was 1.7 mm (about 1/16th of an inch) per year. In the latter part of that period from 1993 onward, the rate of rise was 3.2 mm per year, almost double the average rate – though this estimate is considered too high by some experts. But, while the sudden jump may seem surprising and indicative of acceleration, the fact is that the globally averaged sea level fluctuates considerably over time. This is illustrated in the IPCC’s figure below, which shows estimates from tide gauge data of the rate of rise from 1900 to 1993.

cropped.jpg

It’s clear that the rate of rise was much higher than its 20th century average during the 30 years from 1920 to 1950, and much lower than the average from 1910 to 1920 and again from 1955 to 1980. Strong regional differences exist too. Actual rates of sea level rise range from negative in Stockholm, corresponding to a falling sea level, as that region continues to rebound after melting of the last ice age’s heavy ice sheet, to positive rates three times higher than average in the western Pacific Ocean.

The regional variation is evident in the next figure, showing the average rate of sea level rise across the globe, measured by satellite, between 1993 and 2014.

Sea level rise rate 1993-2014.jpg

You can see that during this period sea levels increased fastest in the western Pacific as just noted, and in the southern Indian and Atlantic Oceans. At the same time, the sea level fell near the west coast of North America and in the Southern Ocean near Antarctica.

The reasons for such a jumbled picture are several. Because water expands and occupies more volume as it gets warmer, higher ocean temperatures raise sea levels. Yet the seafloor is not static and can sink under the weight of the extra water in the ocean basin that comes from melting glaciers and ice caps, and can be altered by underwater volcanic eruptions. Land surfaces can also sink (as well as rebound), as a result of groundwater depletion in arid regions or landfilling in coastal wetlands. For example, about 50% of the much hyped worsening of tidal flooding in Miami Beach, Florida is due to sinking of reclaimed swampland.

Historically, sea levels have been both lower and higher in the past than at present. Since the end of the last ice age, the average level has risen about 120 meters (400 feet), as depicted in the following figure. After it reached a peak in at least some regions about 6,000 years ago, however, the sea level has changed relatively little, even when industrialization began boosting atmospheric CO2. Over the 20th century, the worldwide average rise was about 15-18 cm (6-7 inches).

Sea level rise 24,000 yr.jpg

That the concerns of islanders are unwarranted despite rising seas is borne out by recent studies revealing that low-lying coral reef islands in the Pacific are actually growing in size by as much as 30% per century, and not shrinking. The growth is due to a combination of coral debris buildup, land reclamation and sedimentation. Another study found that the Maldives -- the world's lowest country -- formed when sea levels were even higher than they are today. Studies such as these belie the popular claim that islanders will become “climate refugees,” forced to leave their homes as sea levels rise.

Next: Shrinking Sea Ice: Evaluation of the Evidence